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Abstract—Numerical investigation of the combined forced—free laminar convection (both upward and

downward flow), with a simultaneously developing hydrodynamic and thermal boundary layer in an annulus,

is considered. The thermal condition of an inner wallis isothermal or constant heat flux ; that of an outer wall is

adiabatic. Fluid properties are varied as a function of temperature. Heat transfer characteristics are obtained

by solving the continuity, momentum, energy and integral continuity equations on the basis of the boundary-

layer approximation. Particular attention is given to the critical condition for flow reversal and the effect of
property variations on both Nusselt number and friction factor.

1. INTRODUCTION

IN A High Temperature Gas Cooled Reactor (HTGR),
the reactor core is designed to achieve a high outlet
temperature, Helium gas coolant flows through
annular channels between fuel rods and inner walls of
holes in hexagonal graphite blocks. Fuel element wall
temperature is very high because of the relatively
inferior heat transfer characteristics of a gas. It is
therefore necessary to investigate the effect of large
temperature differences between wall and fluid on heat
transfer and hydrodynamics for an annular passage. In
normal conditions, helium gas flows downward in
the reactor core. In abnormal conditions such as
emergency cooling, the direction of flow might be
reversed owing to buoyant force. In view of HTGR core
safety it is, therefore, of practical importance to
investigate the combined forced—free convection heat
transfer in a vertical annulus.

Much research has been done to investigate
theoretically and experimentally the effect of free
convection on laminar forced—free convection in
various passages under various conditions. Scheele and
Rosen [1] presented numerical solutions for the effect
of free convection on fully-developed laminar flow in a
vertical tube. Greene and Scheele [2] calculated the
combined flow by considering the temperature
dependence of viscosity. Lawrence and Chato [3]
obtained numerical results for the developing
combined laminar flow in a vertical tube with a uniform
entering velocity profile and wall heat flux. Zeldin and
Schmidt [4] made numerical analysis for the
developing combined laminar flow in an isothermal
vertical tube. Siegwarth and Hanratty [5] studied the
flow in a horizontal tube experimentally and
analytically. Quintiere and Mueller [6] examined the
combined laminar flow between vertical parallel plates.
Only a few investigations have been published on the
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combined forced—free laminar flow in an annular
channel. Maitra and Raju [7] and El-Shaarawi and
Sarhan [8] presented the solutions for the combined
numerical results for the developing combined flow in a
vertical annulus, where one of the walls was assumed to
be adiabatic, and the other isothermal.

Investigations with temperature dependence of fiuid
properties were made for the developing forced laminar
flow in a parallel passage by Swearingen and McEligot
[9],and in an annulus by Shumway and McEligot [10].

To the authors’ knowledge, however, no data are
available for the developing combined forced-free
laminar heat transfer with temperature dependence of
fluid properties.

In the present study, numerical investigations of the
combined forced—free convection (both upward and
downward flow), with a simultaneously developing
hydrodynamic and thermal boundary layer in an
annulus, are considered. The thermal condition of an
inner wallisisothermal or constant heat flux ; while that
of an outer wallis adiabatic. The property variation of a
coolant gas is taken into account.

2. GOVERNING EQUATION AND
NUMERICAL METHOD OF SOLUTION

The present analysis assumes steady, laminar, axially
symmetric and incompressible Newtonian fluid. The
axial conduction of heat is neglected. Governing
differential equations are developed on the basis of the
standard boundary-layer approximation. Fluid pro-
perties are varied as a function of temperature. The
conservation equations of mass, momentum and
energy in the entry region of a vertical annulus become :
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specific heat
De hydraulic diameter of annulus, 2(r, —r,)
f friction factor, (De/4Az)(AP— AP,
+ pgAz)/3p .t
g  gravitational body force per unit mass
Gr  Gryor Gry
Grashof number (constant heat flux
condition), De*gqB/v?1
Gr, Grashof number (isothermal wall
condition), De3gAp/pv?
h  heat transfer coefficient
N  annulus radius ratio, r,/r,
Nu Nusselt number, hDe/A
P pressure
P’ pressure defect, P— P, F p,gz
AP pressure drop in axial direction

rz r2
AP, acceleration defect, J pulrdr / J rdr

r r

Pr  Prandtl number, uc,/A

q  heat flux at wall

r radial coordinate

R dimensionless radial coordinate, r/r,
Re Reynolds number, puDe/u

r,  inner radius of annulus

r, outer radius of annulus

t temperature

mixed mean temperature,

r2 r2
J utr dr / J ur dr
ry ry

t; entrance temperature
t, wall temperature

NOMENCLATURE

u axial velocity component
U dimensionless axial velocity, u/u,

r2 rz
u, mean axial velocity,j ur dr / J rdr

ry ri

uy, entrance velocity

v radial velocity component

z axial coordinate

Z  dimensionless axial coordinate,
2z(1—N)/r,Re;

Zr critical distance for zero velocity gradient
normal to a wall.

Greek symbols
B thermal expansion coefficient, t ~*
A thermal conductivity
i viscosity
v kinematic viscosity
p  density.
Subscripts

m  physical property evaluated at r,
q  constant heat flux
t isothermal wall
w  heated (inner) wall condition
i inlet condition
1 inner wall
2 outer wall.
Superscript

*  dimensionless quantity.

oP
ar

ot ot 14 ot
— — === — ). 4
‘P (u 0z +”ar> ror (Ar 6r> @
The plus and minus signs in the buoyancy term of
equation (2) refer to downward and upward flow,

respectively. An additional equation necessary for the
numerical solution is the integral continuity equation:

3

2n ‘[ pur dr = n(ri —r3). (5)

r

These equations are solved using the inlet condition
of uniform entering velocity and temperature profiles:

at z=0;u=u,

v=0

(6)
=1
P =P,

Boundary conditions are as follows :

at r=r, or ry; u=v=0 (noslip)
r=ry; t=t, (isothermal)
or Q)]
—lot/or= (constant
Ot/0r = qw heat flux)
r=ry,; otfor=10 (adiabatic).

The radius ratio N (= r,/r;) is fixed at 0.9 in the
present calculations.

Equations (1)(5) have been numerically solved by
means of an implicit finite-difference scheme. To
accommodate the nonlinearities of these equations it is
necessary toiterate the solution sequence. Thisiterative
scheme was discussed by Swearingen and McEligot
[9]. If the temperature dependence of fluid properties
(except that of the density in the gravitational body
force term) is assumed to be negligible, Gr/Reis the only
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parameter to express the effect of free convection
according to the Boussinesq approximation. In the
present study also, Gr/Re is the primary parameter for
the effect of free convection. However, in the case of a
high heating rate, temperature dependence of the other
properties is not negligible, and thus the solution
cannot be expressed by Gr/Re alone. The transport
properties of gas, i.e. the viscosity and the thermal
conductivity, are nearly independent of pressure and
can be approximated as being proportional to ¢, where
t is the absolute temperature and n is an empirical
constant. Density of gas is inversely proportional to the
pressure; but, as the axial pressure drop in a tube is
usually much less than the absolute pressure, the
density also can be approximated as a function of ¢
only. With these approximations, the effect of the
temperature dependence of fluid properties can be
expressed by an additional parameter t./t; for the
isothermal condition or gDe/A;t; for the constant wall
heat flux. Nondimensional forms of the equations are
presented in the Appendix. Heat transfer and fluid flow
can thus be expressed by (Gr/Re); together with ¢ /¢; or
qDe/2t;.

The exponent nis about0.67 for helium and about 0.7
for air ;slightly different values are found for other kinds
of gases. The Prandtl number of helium is 0.671 and
almost independent of temperature and other gases
also have a roughly constant value of Pr of around 0.7.
The present calculations are made for helium ; however,
results obtained will be roughly applicable for gases
other than helium.

The local Nusselt and Reynolds numbers are defined
as

Nu = hDefl,, Re=p Deu,ju,

where the subscript m indicates that the fluid properties
are evaluated at the mixed mean temperature.
The friction factor is defined as

_ De 1 .2
f = ZA—Z (AP—APaccipmgAz)/meum (8)

AP, is the term due to acceleration, given by

AP,..=A f pu’r dr / f rdr. 9)

ra rz

In the calculations, a sufficiently large number of
mesh points are distributed in both radial and axial
directions, so that the mesh size has practically no
influence on the results. Convergence criteria for
velocity and temperature are 10~ 3.

3. RESULTS AND DISCUSSIONS

3.1. Velocity profiles

Figure 1 represents an example of (Gr/Re)
dependence of axial velocity profile U for both upward
and downward flows at Z = 10™*. This figure shows
that when the free convection opposes the forced flow
(i.e. downward flow) the buoyancy force retards the
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fluid near the heated boundary (i.e. inner wall). On the
other hand, when the free convection aids the forced
flow (i.e. upward flow) the fluid accelerates near the
heated wall and decelerates near the opposite adiabatic
boundary. In the present analysis, the same velocity
profile characteristics as presented by El-Shaarawi and
Sarhan [8] are obtained.

In the case of the downward-flow problem, a
maximum distortion of velocity profile occurs when a
gradient of the profile at the heat transfer boundary
reaches its minimum value. Therefore, a flow reversal
takes place near the heated wall. Figure 2 represents the
(Gr/Re); dependence of its velocity gradient normal to
the wall at the heated boundary corresponding to the
same value of the additional parameter (z,/t;). With
increasing (Gr,/Re);, the gradient of a developing axial
velocity at the heated wall deviates from the profile for
(Gr/Re); = O until alocation where its value represents
a minimum. With increasing axial distance further, the
gradient recovers and approaches the fully-developed
isothermal profile as the fluid temperature approaches
the isothermal wall temperature. Flow reversal takes
place near a location where the gradient of axial
velocity profile vanishes or becomes negative. Under
such a condition, boundary-layer separation may
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Fi1G. 2. (Gr/Re); dependence of axial velocity gradient normal
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occur and the boundary-layer approximation might no
longer be applicable. Heat transfer and fluid flow
beyond the flow reversal is thus out of the present scope
and is left for future work.

In case of the upward flow, flow reversal takes place
on the adiabatic wall in contrast with the downward
flow.

The effect of fluid property variations, i.e. effect of
(t4/t;),isshownin Fig. 3. For a higher (¢,,/t;), the velocity
gradient does not fall to zero. This is due to an
increasing thermal conductivity of gas for higher (¢,,/t}).
Thus, the condition of the flow reversal is influenced
appreciably if the property variations of gas are
considered. In case of constant wall heat flux, the same
tendency as constant wall temperature has been
obtained.

3.2. Critical condition for flow reversal

El-Shaarawi and Sarhan [8] presented the critical
distance Zr, where a velocity gradient normal to the
wall vanishes. In the present study, Zr is obtained for
each value of (Gr/Re);, t./t; or qDe/At;. Forasmall t,/t;,
i.e. for negligible property variations, the present values
of Zr are almost in agreement with those of El-
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Shaarawi and Sarhan. When the property variations
are appreciable, the point of zero velocity gradient
moves downwards and disappears with increase in ¢,,/¢;
or gDe/A;t;. Figure 4 represents the critical condition for
the flow reversal. The flow reversal disappears with
decreasing (Gr/Re); or with increasing t,./t;, gDe/At;. It
is noticeable that the critical (Gr/Re); of downward flow
ismuch smaller than that of upward flow. The following
consideration is responsible for this tendency ; thatis,in
case of downward flow, buoyancy force directly retards
the fluid near the heated boundary. On the other hand,
in case of upward flow, the force retards the fluid near
the adiabatic boundary only indirectly through the
acceleration near the heated boundary.

The critical conditions for flow reversal can be
represented by following relations:

Uniform isothermal condition (1 < t,/t; < 2.5)

(Gr/Re); = 420+ 200(z,/t})
(Gr/Re); = 40+190(t,/t) (downward flow).

upward flow
(up ) 10)
Uniform wall heat flux condition (0 < gDe/At; < 6.0)
(Gr/Re); = 3750+ 1050(gDe/A;t;)
(upward flow)
(Gr/Re); = 640+ 610(gDe/A;t;)

(downward flow).
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3.3. Heat transfer

The effect of free convection on laminar heat transfer
is shown in Figs. 5 and 6, where the thermal conditions
of an inner wall are isothermal and uniform heat flux,
respectively. These figures show that with increasing
(Gr/Re); Nusselt number decreases for downward flow
and increases for upward flow. With increasing the
axial distance further, the Nusselt number approaches
a fully-developed isothermal or uniform heat flux value.
This tendency is the same as the one obtained by El-
Shaarawi and Sarhan. Figure 7 shows the effect of
property variations on a combined convection heat
transfer for various ¢,,/t; in the case of isothermal wall
condition. It is seen that the Nusselt number is almost
independent of t./t;. This tendency for property
variations is very similar to that of laminar forced
convection heat transfer [9, 10]. In case of the uniform
heat flux heating, the same tendency as that of the
isothermal wall heating has been obtained.

3.4. Friction factor

The effect of free convection on laminar friction
factor is given in Figs. 8 and 9 with (Gr,/Re;) and
(Gry/Re); as parameters, respectively. These figures
show that the product of the friction factor and the
Reynolds number increases with increasing (Gr/Re);
except for the down flow of uniform heat flux heating.
With increasing axial distance, the product approaches
a fully-developed value.
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FiG. 8. (Gr/Re); dependence of friction factor.
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Figure 10 presents the effect of the property
variations with the additional parameter t,/t; in the
case of isothermal wall heating. The effect of the
property variations is small for the downward flow;
while it is relatively large for the upward flow. The same
tendency has been obtained for the other values of the
parameter.

Calculation of the total pressure drop is often
required in engineering applications. The total pressure
drop in the direction of flow can be obtained from
equation (8), using the friction factor, f, as

A
AP = (4f }%pmuﬁ.(ba +AP, . +pugAz,  (12)

where the plus and minus signs refer to upward and
downward flows, respectively. In engineering calcu-
lations, the acceleration defect AP,. is usually
approximated as

AP,ce = Alpaur) = (puliAlpg"). (13)

4, CONCLUSIONS

Numerical investigations of the laminar combined
forced-free convection heat transfer were studied. The
properties of the gas were varied as a function of
temperature. Results obtained are summarized below :

(1) Combined forced—free laminar Nusselt number,
friction factor and critical conditions for flow
reversal in case of both isothermal and uniform heat
flux wall conditions were obtained.
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(2) The fluid-property variation influences rather
slightly the heat transfer coefficient or friction
factor. The influence is, however, significant for the
critical condition of the flow reversal.

(3) With increase in (Gr/Re);, Nusselt number
decreases for downward flow and increases for
upward flow. The product of friction factor and
Reynolds number also increases except for the
downward flow of constant wall heat flux.

(4) Theflow reversal takes place when (Gr/Re), exceeds
a critical value. For a given (Gr/Re),, however, the
flow reversal disappears with increase in t,/t; or
qDe/At;.
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APPENDIX

Non-dimensional forms of the fundamental equations are
given below. Nondimensional variables are defined as

Z = z{z,, zy,=r,Re/2(1~N)
R=r/r,
u* = ufu,

K. HASHIMOTO et al.

v*= /vy, Vo = piry/2(1— Ny

o {(t ~t)/(t,—1) (isothermal)
h (t—t)/(gDe/2;) (constant heat flux)

P*= P[P, P, = puj.

Variation of physical properties is approximated as

p*=pb7!
ur= o™
=L
oy = cpit™,

where 8 is a supplemental nondimensional temperature to
represent property variation.

0 =t/
_ j@u/ti—1)*+ 1 (isothermal wall)
" l(gDe/A)t*+1  (constant heat flux).

As t,/t;—> 1 or q— 0, 6 tends to unity; thus property
variation becomes negligible.

Using these variables, the fundamental equations can be
nondimensionalized as

10 3
Y R 4 2 (¥ ) =
RaR(pRv)+aZ(pu) 0

e\  oP* 10 [ . aut
*[ % Fo* - _ 2 | y*R
P (“ az *? ax) iz +R6R('u ax)

Gr, i ty\ t*
Re ), 40—NP \5) 0
Gry 1 o
Re ), 41—N) 0

or* or* 1129 ot*
* % * * ) =— — — [ A*R——}.
P (" az 6R) PriRaR( 6R)

Boundary conditions are

(isothermal wall)

(constant heat flux)

at Z=0; u*=1
v*=0
t*=0
P*=0
at R=N and 1; w*=v*=0
R=N,; t*=1 (isothermal wall)
*
o - *%22(11—N)
(constant heat flux)
R=1, E:O
R

Thus, the solutions of u*, v*, t* can be expressed as a
function of following co-ordinates and parameters;

co-ordinates: Z, R

fundamental non-dimensional numbers :
(Gr/Re); or (Gry/Re), Pr;

geometrical parameter: N

property parameters: ny, n,, iy

heating parameters: t,,/t; or gDe/At;.
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TRANSFER DE CHALEUR D’ECOULEMENT LAMINAIRE DE LA CONVECTION MIXTE
FORCEE/LIBRE AU GAZ FORTEMENT CHAUFFE DANS LE CONDUIT VERTICAL
ANNULAIRE

Résumé—On analyse les valeurs numériques de’écoulement laminaire de la convection mixte forcée/libre (des
courants ascendant et descendant) sur le cas ou se développent simultanément le courant dans le conduit
annulaire et la couche limite des températures. La condition thermique du mur intérieur est supposée comme le
mur isotherme ou le flux isotherme et celle du mur extérieur comme adiabatique. On fait varier des valeurs
physiques du fluid en fonction des températures. Basé sur Papproximation d’écoulement laminaire, on obtient
les caractéristiques de transfer de chaleur par résolution des équation de continuité, celle de mouvement, celle
d’énergie et celle de continuité intégrée. On examine surtout des conditions génératrices du courant inverse et
I'influence de la variation des valeurs physiques 4 I'égard des nombre de Nusselt et coefficient de frottement.

WARMEUBERTRAGUNG BEI LAMINARER STROMUNG UNTER ERZWUNGENER UND
FREIER MISCHSTROMUNG AUF STARK ERHITZT GAS IM SENKRECHTEN RINKSPALT

Zusammenfassung— Die erzwunger und freier mischstrémung im senkrechten Rinkspalt wird numerisch
unter laminaren Stromungsbedingungen fiir den Fall einer gleichzeiten Entwicklung von Strémung und
Temperaturgrenzschicht analysiert. Die Wiarmebedingung an der Innenwandung ist isothermisch oder
gleichméssiger Wirmestromdicht. Stoffwerte fir das Gas wurden in funktionidler Abhédngigkeit von
Temperature verdndert. Die Wirmeiibertragung wird durch Anniherung an die Grenzschicht durch Losung
des Gleichungssystems fiir Kontinuitéts, Impuls und Energiesatz bestimmt. Insbesonders wurde der Einfluss
von Verdnderung der physikalischen Grossen auf die Bedingungen zur Gegenstrombildung auf die
Nusseltzahl und auf den Reibungs koeffizienten untersucht.

TENUJIOOTAAYA K JJAMHUHAPHOMY IOTOKY CHUJIBHO HAT'PETOI'O I'A3A B
BEPTUKAJILHOM KOJIBLIEOBPA3HOM 3A30PE BbIHVKJEHHO-ECTECTBEHHOM
KOHBEKLIUENA

AHROTAUHS—AHAJIN3UPYETCA YMCJIEHHBIM METOIOM TeIUIOOTAaYa K JJAMHHAPDHOMY MOTOKY CHJIBHO HAr-
peroro ra3sa, HIOyMIEro BBEPX MM BHH3 B BEPTHKaJLHOM KOJbLEOGPa3sHOM 3a30pe, COBMECTHOMH
BBIHYXEHHO—CCTECTBEHHOH KOHBEKLHEH NMPH OJHOBPEMEHHOM PAa3BHTHH FMAPOOMHAMMYECKOTO H Tel-
JIOBOTO NOrPaHHYHbIX coeB. IIpH 3TOM BHYTPEHHAS CTEHKa CYMTAETCS H30TEPMHYECKO#H HIIM CTEHKOM ¢
TEMJIOBBLIM NOTOKOM, OOMHAKOBBIM Ha BCEX TOYKAX MOBEPXHOCTH, 4 HAPYXKHAA CTEHKa—aauabaTH4eckoil.
dusuyeck¥e napaMeTpbl cpedbl CUMTalOTCH GYHKUMAMH TemnepaTypbl. Mcxons u3 npubmxeHHOR
OLIeHKH IIOTPaHM4YHBIX CJIOEB H Pelllag ypaBHEHHA HEPA3phIBHOCTH, JHEPTHH U ABHXKEHHA, 2 TAKXe MHTET-
PHUPOBaHHOE ypaBHEHHE HEepa3pHIBHOCTH, NOJIyueHa XapaKTepPHCTHKA TEMWIOOTAauH. B wacTHocTH pacc-
MOTPEHO BIHMAHHE H3MEHEHHA (HM3MMYECKMX MapaMeTPOB HA YC/IOBHA BO3HMKHOBeHMs oOpaTHOro
NoTOKa, BeTHuHHbI KpuTepHsa HyccenbTa u koedduuuenTa TpeHus.
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