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Abstract-Numerical investigation of the combined forced-free laminar convection (both upward and 
downward flow), with a simultaneously developing hydrodynamic and thermal boundary layer in an annulus, 
is considered. The thermal condition ofan inner wall isisothermal or constant heat flux; that ofan outer wall is 
adiabatic. Fluid properties are varied as a function of temperature. Heat transfer characteristics are obtained 
by solving the continuity, momentum, energy and integral continuity equations on the basis of the boundary- 
layer approximation. Particular attention is given to the critical condition for flow reversal and the effect of 

property variations on both Nusselt number and friction factor. 

1. INTRODUCTION 

IN A High Temperature Gas Cooled Reactor (HTGR), 
the reactor core is designed to achieve a high outlet 
temperature. Helium gas coolant flows through 
annular channels between fuel rods and inner walls of 
holes in hexagonal graphite blocks. Fuel element wall 
temperature is very high because of the relatively 
inferior heat transfer characteristics of a gas. It is 
therefore necessary to investigate the effect of large 
temperature differences between wall and fluid on heat 
transfer and hydrodynamics for an annular passage. In 
normal conditions, helium gas flows downward in 
the reactor core. In abnormal conditions such as 
emergency cooling, the direction of flow might be 
reversed owing to buoyant force. In view of HTGR core 
safety it is, therefore, of practical importance to 
investigate the combined forced-free convection heat 
transfer in a vertical annulus. 

Much research has been done to investigate 
theoretically and experimentally the effect of free 
convection on laminar forced-free convection in 
various passages under various conditions. Scheele and 
Rosen [l] presented numerical solutions for the effect 
of free convection on fully-developed laminar flow in a 
vertical tube. Greene and Scheele [2] calculated the 
combined flow by considering the temperature 
dependence of viscosity. Lawrence and Chato [S] 
obtained numerical results for the developing 
combined laminar flow in a vertical tube with a uniform 
entering velocity profile and wall heat flux. Zeldin and 
Schmidt [4] made numerical analysis for the 
developing combined laminar flow in an isothermal 
vertical tube. Siegwarth and Hanratty [S] studied the 
flow in a horizontal tube experimentally and 
analytically. Quintiere and Mueller [6] examined the 
combined laminar flow between vertical parallel plates. 
Only a few investigations have been published on the 
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combined forced-free laminar flow in an annular 
channel. Maitra and Raju [7] and El-Shaarawi and 
Sarhan [S] presented the solutions for the combined 
numerical results for the developing combined flow in a 
vertical annulus, where one of the walls was assumed to 
be adiabatic, and the other isothermal. 

Investigations with temperature dependence of Auid 
properties were made for the developing forced laminar 
flow in a parallel passage by Swearingen and McEligot 
[9], and in an annulus by Shumway and McEligot [lo]. 

To the authors’ knowledge, however, no data are 
available for the developing combined forced-free 
laminar heat transfer with temperature dependence of 
fluid properties. 

In the present study, numerical investigations of the 
combined forced-free convection (both upward and 
downward flow), with a simultaneously developing 
hydrodynamic and thermal boundary layer in an 
annulus, are considered. The thermal condition of an 
inner wall is isothermal or constant heat flux ; while that 
of an outer wall is adiabatic. The property variation of a 
coolant gas is taken into account. 

2. GOVERNING EQUATION AND 
NUMERICAL METHOD OF SOLUTION 

The present analysis assumes steady, laminar, axially 
symmetric and incompressible Newtonian fluid. The 
axial conduction of heat is neglected. Governing 
differential equations are developed on the basis of the 
standard boundary-layer approximation. Fluid pro- 
perties are varied as a function of temperature. The 
conservation equations of mass, momentum and 
energy in the entry region of a vertical annulus become : 
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NOMENCLATURE 

specific heat 
hydraulic diameter of annulus, 2(r, - rl) 
friction factor, (De/4Az)(AP - AP,,, 

+ PgAz)/&,&, 
gravitational body force per unit mass 
Gr, or Gr, 
Grashof number (constant heat flux 
condition), De4gq/?/v21Z 
Grashof number (isothermal wall 
condition), De3gAp/pv2 
heat transfer coefficient 
annulus radius ratio, rl/r2 
Nusselt number, hDe/l 
pressure 
pressure defect, P-P, f pigz 
pressure drop in axial direction 

Yrz I l-2 
APm acceleration defect, 

J 
pu2r dr 

/J 
r dr 

II ,I 
Pr Prandtl number, &l 

4 
r 
R 
Re 

r1 
r2 
t 

trill 

ti 
L 

heat flux at wall 
radial coordinate 
dimensionless radial coordinate, r/r2 
Reynolds number, puDe/p 
inner radius of annulus 
outer radius of annulus 
temperature 
mixed mean temperature, 

rutrdr/rurdr 

eztrance temperature 
wall temperature 

U axial velocity component 
U dimensionless axial velocity, u/u0 

12 

s is 

12 
u, mean axial velocity, ur dr r dr 

I1 I* 
uo entrance velocity 
V radial velocity component 

; 
axial coordinate 
dimensionless axial coordinate, 
2z(l- N)Jr,Re, 

Zr critical distance for zero velocity gradient 
normal to a wall. 

Greek symbols 
/I thermal expansion coefficient, t-’ 
L thermal conductivity 

p viscosity 
V kinematic viscosity 

P density. 

Subscripts 
m physical property evaluated at t, 
9 constant heat flux 
t isothermal wall 
W heated (inner) wall condition 
i inlet condition 
1 inner wall 
2 outer wall. 

Superscript 
* dimensionless quantity. 

0-g 

cg(u$+a~)=~$@r~). (4) 

The plus and minus signs in the buoyancy term of 
equation (2) refer to downward and upward flow, 
respectively. An additional equation necessary for the 
numerical solution is the integral continuity equation : 

s 

12 
2n pur dr = n(r: - rz). (3 

II 

These equations are solved using the inlet condition 
of uniform entering velocity and temperature profiles : 

at z=O;u=u, 

v=o 
(6) 

t = ti 

P = Pi. 

Boundary conditions are as follows : 

at r=ri or r,; u=v=o (no slip) 

r = r,; t = t, (isothermal) 

1 

1 

or (7) 

- 1 atjar = qw 
(constant 
heat flux) 

r=r2; atlar= 0 (adiabatic). 

The radius ratio N (= r1/r2) is fixed at 0.9 in the 
present calculations. 

Equations (l)(5) have been numerically solved by 
means of an implicit finite-difference scheme. To 
accommodate the nonlinearities of these equations it is 
necessary to iterate the solution sequence. This iterative 
scheme was discussed by Swearingen and McEligot 
[9]. If the temperature dependence of fluid properties 
(except that of the density in the gravitational body 
force term) is assumed to be negligible, Gr/Re is the only 
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parameter to express the effect of free convection 
according to the Boussinesq approximation. In the 
present study also, Gr/Re is the primary parameter for 
the effect of free convection. However, in the case of a 
high heating rate, temperature dependence of the other 
properties is not negligible, and thus the solution 
cannot be expressed by GrlRe alone. The transport 
properties of gas, i.e. the viscosity and the thermal 
conductivity, are nearly independent of pressure and 
can be approximated as being proportional to t”, where 
t is the absolute temperature and n is an empirical 
constant. Density of gas is inversely proportional to the 
pressure; but, as the axial pressure drop in a tube is 
usually much less than the absolute pressure, the 
density also can be approximated as a function of t 
only. With these approximations, the effect of the 
temperature dependence of fluid properties can be 
expressed by an additional parameter twIti for the 
isothermal condition or qDe/Aiti for the constant wall 
heat flux. Nondimensional forms of the equations are 
presented in the Appendix. Heat transfer and fluid flow 
can thus be expressed by (Gr/Re)i together with t,/t, or 
qDe/liti. 

The exponent n is about 0.67 for helium and about 0.7 
for air ; slightly different values are found for other kinds 
of gases. The Prandtl number of helium is 0.671 and 
almost independent of temperature and other gases 
also have a roughly constant value of Pr of around 0.7. 
Thepresent calculationsaremadeforhelium;however, 
results obtained will be roughly applicable for gases 
other than helium. 

The local Nusselt and Reynolds numbers are defined 
as 

Nu = hDe/&,, Re = p,DeuJp, 

where the subscript m indicates that the fluid properties 
are evaluated at the mixed mean temperature. 

The friction factor is defined as 

(8) 

AP,,, is the term due to acceleration, given by 

AP,,, =A~~pu’rdr/~~rdr. (9) 

In the calculations, a sufficiently large number of 
mesh points are distributed in both radial and axial 
directions, so that the mesh size has practically no 
influence on the results. Convergence criteria for 
velocity and temperature are lo-‘. 

3. RESULTS AND DISCUSSIONS 

3.1. Velocity projles 
Figure 1 represents an example of (GrJRe)i 

dependence of axial velocity profile U for both upward 
and downward flows at 2 = 10e4. This figure shows 
that when the free convection opposes the forced flow 
(i.e. downward flow) the buoyancy force retards the 

u 

2.0 

1.0 

n 

FIG. 1. (GrJRe), dependence of axial velocity profiles. 

fluid near the heated boundary (i.e. inner wall). On the 
other hand, when the free convection aids the forced 
flow (i.e. upward flow) the fluid accelerates near the 
heated wall and decelerates near the opposite adiabatic 
boundary. In the present analysis, the same velocity 
profile characteristics as presented by El-Shaarawi and 
Sarhan [8] are obtained. 

In the case of the downward-flow problem, a 
maximum distortion of velocity profile occurs when a 
gradient of the profile at the heat transfer boundary 
reaches its minimum value. Therefore, a flow reversal 
takes place near the heated wall. Figure 2 represents the 
(Gr,/Re)i dependence of its velocity gradient normal to 
the wall at the heated boundary corresponding to the 
same value of the additional parameter (t&J. With 
increasing (GrJRe)i, the gradient of a developing axial 
velocity at the heated wall deviates from the profile for 
(GrJRe)i = 0 until a location where its value represents 
a minimum. With increasing axial distance further, the 
gradient recovers and approaches the fully-developed 
isothermal profile as the fluid temperature approaches 
the isothermal wall temperature. Flow reversal takes 
place near a location where the gradient of axial 
velocity profile vanishes or becomes negative. Under 
such a condition, boundary-layer separation may 
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FIG. 2. (GrJRe)i dependence of axial velocity gradient normal 
to the wall, downflow. 
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FIG. 3. t&dependence of axial velocity gradient normal to the 
wall, downflow. 

occur and the boundary-layer approximation might no 
longer be applicable. Heat transfer and fluid flow 
beyond the flow reversal is thus out ofthe present scope 
and is left for future work. 

In case of the upward flow, flow reversal takes place 
on the adiabatic wall in contrast with the downward 
flow. 

The effect of fluid property variations, i.e. effect of 
(t&J, is shown in Fig. 3. For a higher (t&i), the velocity 
gradient does not fall to zero. This is due to an 
increasing thermal conductivity of gas for higher (t&J. 
Thus, the condition of the flow reversal is influenced 
appreciably if the property variations of gas are 
considered. In case of constant wall heat flux, the same 
tendency as constant wall temperature has been 
obtained. 

3.2. Critical condition forjow reversal 
El-Shaarawi and Sarhan [S] presented the critical 

distance Zr, where a velocity gradient normal to the 
wall vanishes. In the present study, Zr is obtained for 
each value of(Gr/Re),, tJti or qDe/liti. For a small tJti* 
i.e. for negligible property variations, the present values 
of Zr are almost in agreement with those of El- 
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Rc. 4. Critical conditions for flow reversal. 
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FIG. 5. (GrJRe)i dependence of Nusselt number. 

Shaarawi and Sarhan. When the property variations 
are appreciable, the point of zero velocity gradient 
moves downwards and disappears with increase in t,Jti 
or qDe/liti. Figure 4 represents the critical condition for 
the flow reversal. The flow reversal disappears with 
decreasing (Gr/Re)i or with increasing tw/ti, qDe/liti. It 
is noticeable that the critical (Gr/Re), ofdownward flow 
is much smaller than that ofupward flow. The following 
consideration is responsible for this tendency ; that is, in 
case of downward flow, buoyancy force directly retards 
the fluid near the heated boundary. On the other hand, 
in case of upward flow, the force retards the fluid near 
the adiabatic boundary only indirectly through the 
acceleration near the heated boundary. 

The critical conditions for flow reversal can be 
represented by following relations : 

Uniform isothermal condition (1 < tw/ti < 2.5) 

(Gr/Re), = 420 + 200(tW/ti) (upward flow) 
(10) 

(Gr/Re), = 40+ 190(t&,) (downward flow). 

Uniform wall heat flux condition (0 < qDe/liti < 6.0) 

(Gr/Re), = 3750 + 1050(qDe/liti) 

(upward flow) 

(Gr/Re), = 64Ot 610(qDe/liti) (11) 

(downward flow). 
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FIG. 6. (Gr,/Re)i dependence of Nusselt number. 
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FIG. 7. t,/ti dependence of Nusseh number. 

3.3. Heat transfer 
The effect of free convection on laminar heat transfer 

is shown in Figs. 5 and 6, where the thermal conditions 
of an inner wall are isothermal and uniform heat flux, 
respectively. These figures show that with increasing 
(Gr/Re)i Nusselt number decreases for downward flow 
and increases for upward flow. With increasing the 
axial distance further, the Nusselt number approaches 
a fully-developed isothermal or uniform heat flux value. 
This tendency is the same as the one obtained by El- 
Shaarawi and Sarhan. Figure 7 shows the effect of 
property variations on a combined convection heat 
transfer for various t,/ti in the case of isothermal wall 
condition. It is seen that the Nusselt number is almost 
independent of twiti. This tendency for property 
variations is very similar to that of laminar forced 
convection heat transfer [9, lo]. In case of the uniform 
heat flux heating, the same tendency as that of the 
isothermal wall heating has been obtained. 

3.4. Friction factor 
The effect of free convection on laminar friction 

factor is given in Figs. 8 and 9 with (GrJRe,) and 
(Gr,/Re)i as parameters, respectively. These figures 
show that the product of the friction factor and the 
Reynolds number increases with increasing (Gr/Re)i 
except for the down flow of uniform heat flux heating. 
With increasing axial distance, the product approaches 
a fully-developed value. 
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FIG. 9. (Gr,/Re), dependence of friction factor. 

Figure 10 presents the effect of the property 
variations with the additional parameter tw/ti in the 
case of isothermal wall heating. The effect of the 
property variations is small for the downward flow; 
while it is relatively large for the upward flow. The same 
tendency has been obtained for the other values of the 
parameter. 

Calculation of the total pressure drop is often 
required in engineering applications. The total pressure 
drop in the direction of flow can be obtained from 
equation (S), using the friction factor, J as 

AP = (4f)$p,u; +AP,,,+p,& (12) 

where the plus and minus signs refer to upward and 
downward flows, respectively. In engineering calcu- 
lations, the acceleration defect AP,,, is usually 
approximated as 

APa,, z A@,&) = (pu);A(p, ‘). (13) 

4. CONCLUSIONS 

Numerical investigations of the laminar combined 
forced-free convection heat transfer were studied. The 
properties of the gas were varied as a function of 
temperature. Results obtained are summarized below : 

(1) Combined forced-free laminar Nusselt number, 
friction factor and critical conditions for flow 
reversal in case of both isothermal and uniform heat 
flux wall conditions were obtained. 
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Fro 10. tw/ti dependence of friction factor. FIG. 8. (G~JR.s)~ dependence of friction factor. 
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(2) The fluid-property variation influences rather 
slightly the heat transfer coefficient or friction 
factor. The influence is, however, significant for the 
critical condition of the flow reversal. 

(3) With increase in (Gr/Re)i, Nusselt number 
decreases for downward flow and increases for 
upward flow. The product of friction factor and 
Reynolds number also increases except for the 
downward flow of constant wall heat flux. 

(4) The flow reversal takes place when (Gr/Re), exceeds 
a critical value. For a given (Gr/Re)i, however, the 
flow reversal disappears with increase in I,& or 
qDe/& 
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APPENDIX 

Non-dimensional forms of the fundamental equations are 
given below. Nondimensional variables are defined as 

Z = z/zO, z0 = r,RedZ(l -N) 

R = r/r2 

u* = U/Q 

v* = v/vo, v. = pir,/2(1 -N)p, 

t* = i 

(t - tJ/(t,- ti) (isothermal) 

(t - t,M(qDe/,$) (constant heat flux) 

P* = PIP,, P, = pill;. 

Variation of physical properties is approximated as 

p* = /$I-’ 

p* = /#’ 

I* = &en2 

c; = Cpifr’, 

where 0 is a supplemental nondimensional temperature to 
represent property variation. 

e = r/ti 

= i 

(tw/ti - l)t* + 1 (isothermal wall) 

(qDe/&)t* + 1 (constant heat flux). 

As tw/ti -N 1 or q -) 0, 0 tends to unity; thus property 
variation becomes negligible. 

Using these variables, the fundamental equations can be 
nondimensionalized as 

$ & (p*Rv*)+ & (p*u*) = 0 

(constant heat flux) 

Boundary conditions are 

at Z=O; u* = 1 

v*=o 

t*= 0 

p*=o 

at R=N and 1; u*=v*=O 

R=N; t*= 1 (isothermal wall) 

or _A*!?= l 
dR 2(1-N) 

(constant heat flux) 

;it* 
R=l; 1(=” 

Thus, the solutions of u*, v*, t* can be expressed as a 
function of following co-ordinates and parameters ; 

co-ordinates : Z, R 

fundamental non-dimensional numbers : 

(GrJRe)i or (Gr,/Re),, Pri 

geometrical parameter : N 

property parameters : n,, n2, n, 

heating parameters: t,,./ti or qDe&. 
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TRANSFER DE CHALEUR D’ECOULEMENT LAMINAIRE DE LA CONVECTION MIXTE 
FORCEE/LIBRE AU GAZ FORTEMENT CHAUFFE DANS LE CONDUIT VERTICAL 

ANNULAIRE 

R&me-Onanalyselesvaleursnumeriquesdel’&oulement laminairedelaconvectionmixtefor&e/libre(des 
courants ascendant et descendant) sur le cas oti se developpent simultanement le courant dam le conduit 
annulaireetlacouchelimitedes temp&ratures.Lacondition thermiquedumurint&ieurestsupposbcommele 
mur isotherme ou le flux isothetme et celle du mur exterieur comme adiabatique. On fait varier des valeurs 
physiquesdu fluid en fonction des temperatures. Base sur l’approximation d’ecoulement laminaire, on obtient 
les caracteristiques de transfer de chaleur par resolution des equation de continuite, celle de mouvement, celle 
d’tnergie et celle de continuite integree.. On examine surtout des conditions g&.ratrices du courant inverse et 
l’influence de la variation des valeurs physiques a ltgard des nombre de Nusselt et coefficient de frottement. 

WARMEUBERTRAGUNG BE1 LAMINARER STRGMUNG UNTER ERZWUNGENER UND 
FREIER MISCHSTRGMUNG AUF STARK ERHITZT .GAS IM SENKRECHTEN RINKSPALT 

Zusammenfassnng-Die erzwunger und freier mischstromung im senkrechten Rinkspalt wird numerisch 
unter laminaren Striimungsbedingungen fur den Fall einer gleichzeiten Entwicklung von Strdmung und 
Temperaturgrenzschicht analysiert. Die Wlrmebedingung an der Innenwandung ist isothermisch oder 
gleichmlssiger Wiirmestromdicht. Sto5werte filr das Gas wurden in funktionller Abhlngigkeit von 
Temperature verandert. Die WIrmeiihertragung wird durch Annlherung an die Grenxschicht durch Losung 
des Gleichungssystems fur Kontinuitlts, Impuls und Energiesatz hestimmt. Inshesonders wurde der Einfluss 
von Veriinderung der physikalischen Grossen auf die Bedingungen zur Gegenstrombildung auf die 

Nusseltxahl und auf den Reibungs koeffizienten untersucht. 

TEl-IJIOOT~ArIA K JIAMBHAPHOMY IIOTOKY CMJIbHO HArPETOI.0 l-A3A B 
BEPTHKAnbHOM KOJIbHEOBPA3HOM 3A3OPE BbIHYXAEHHO-ECTECTBEHHOH 

KOHBEKHWEH 

AHIIOT~LW--AHZXIIHW~~~CT~~ wcneHHMM MeTOnOM TermooTnaua K naMaHapHoMy noToKy CHnbHO Har- 
peTOr ra38, HJtyrtrerO BBepX HJIH BHH3 B BepTHKaJtbHOM KOJtbneO6pa3HOM 3a3Ope, COBMeCTHOfi 
BbtHy~~eHHO-ecrec’rneHtiOti KOHBeKnHeii npH OJtHOBpeMeHHOM pa3aHTHH rH~pOnHHaMH’tecKOr0 H Ten- 
noaoro norpanasnbtx cnoea. IIpu 3~0~ BH~T~~HH~B creHxa cHHraercn H30repMmtecxofi mm neHKoii c 
rennonbthr noroxohr, 0nHHaxonbtM Ha acex romcax noaepxHocrH, a Hapyxtiar crettxa-anHa6aTaHecxoii. 
@asH=iectcHe napahrerpn cpenbt cHtirarorcn I$~HKUHRMH rehmeparypbt. kicxonn 83 npH6JtHmeHHOH 
0neHxH norpaHHHHbtx cnoea H pernan ypaaHeHHa Hepa3pbmHocrH, 3HeprHH H neaxeeun, a ratoxe HHrer- 
pHpoeaHHoe ypaeHeHne HepaspbteHocrH, nonyqeea xapaxrepacrnxa rermoornaHa. B qacruocrri pacc- 
MOTpeHO BJtHaHHe H3hreneHHn &i3HHYCCKHX napahlerpoe Ha ycnot3Hn B03HHKHOBeHHs 06paTHoro 

IlOTOKa, BeJlH’iHHbI KpHTepHJl HyCCenbTa W KOCX$&iI(HeHTa T,XHHn. 


